MATH 147A SAMPLE MIDTERM

April 28, 2016 The midterm will be 5 problems, some computational, some conceptual. Feel free to bring a reasonable sized paper for notes and formulas.
(1) Compute the curvature of

$$
\gamma(t)=\left(\cos ^{3}(t), \sin ^{3}(t)\right) .
$$

(2) Compute the curvature and torsion (if it exists) of

$$
\gamma(t)=\left(\frac{4}{5} \cos (t), 1-\sin (t),-\frac{3}{5} \cos (t)\right)
$$

Show that γ parametrizes a circle, find its center, radius and the plane in which it lies.
(3) Show that a unit speed curve with $\kappa(s)>0$ for each $s \in[a, b]$ is a plane curve if and only if the torsion vanishes everywhere.
(4) State and prove the isoperimetric inequality, assuming Wirtinger's inequality and Green's theorem for area.
(5) Show that a reparametrization by arc-length gives a unit-speed curve.
(6) Derive the Frenet-Serret equation.
(7) Let $\gamma:(a, b) \rightarrow \mathbb{R}^{2}$ be a regular plane curve and let $a \in \mathbb{R}^{2}$ such that $\gamma(t) \neq a$ for all t. If there exists a $t_{0} \in(a, b)$ such that

$$
\|\gamma(t)-a\| \geq\left\|\gamma\left(t_{0}\right)-a\right\|
$$

for all $t \in(a, b)$, show that the straight line joining the point a with $\gamma\left(t_{0}\right)$ is the normal line of γ at t_{0}. The same is true if we reverse the inequality. Draw a situation that illustrates both cases.
(8) Let $\gamma:(a, b) \rightarrow \mathbb{R}^{2}$ be a regular plane curve and let $[\alpha, \beta] \subset(a, b)$ be such that $\gamma(\alpha) \neq \gamma(\beta)$. Prove that there exists some $t_{0} \in(\alpha, \beta)$ such that the tangent line of γ at t_{0} is parallel to the segment of the straight line joining $\gamma(\alpha)$ with $\gamma(\beta)$. This is a curve version of mean value theorem. Hint: Consider $f(t)=\operatorname{det}(\gamma(t), \gamma(\beta)-\gamma(\alpha))$.
(9) Prove that a unit speed curve $\gamma:(a, b) \rightarrow \mathbb{R}^{2}$ is an arc of a circle if and only if all its normal lines pass through a given point.
(10) Let $\gamma:(a, b) \rightarrow \mathbb{R}^{3}$ be a unit speed curve with positive curvature. If $\|\gamma(s)\|=1$ for all s, i.e. γ is a curve on a sphere, and it has constant torsion τ, prove that there exists $b, c \in \mathbb{R}$ such that

$$
\kappa(s)=\frac{1}{b \cos (\tau s)+c \sin (\tau s)}
$$

(11) Let γ be a unit speed curve in \mathbb{R}^{3} with constant curvature and zero torsion. Show that γ is a parametrization of a circle.

Solutions

1. Book problem 2.1.1
2. Book problem 2.3.1
3. Book Prop 2.3.3
4. Book Theorem 3.2.2
5. Let $\gamma(t)$ be a curve and let $s(t)=\int_{0}^{t}\|\dot{\gamma}(u)\| d u$ be the arc length. Then

$$
\frac{d}{d s} \gamma(t)=\dot{\gamma} \frac{d t}{d s}=\frac{\dot{\gamma}}{\frac{d s}{d t}}=\frac{\dot{\gamma}}{\|\dot{\gamma}\|}
$$

Hence $\left\|\frac{d \gamma}{d s}\right\|=1$ (as long as γ is regular).
6. See paragraph before Theorem 2.3.4
7. Let $f(t)=\|\gamma(t)-a\|^{2}$. Then $t=t_{0}$ is a minimum therefore

$$
0=f^{\prime}\left(t_{0}\right)=2\left\langle\gamma^{\prime}\left(t_{0}\right), \gamma\left(t_{0}\right)-a\right\rangle
$$

The same proof will work for a maximum.
8. We have $f(a)=f(b)=0$. Therefore, by mean value theorem, there is a point such that

$$
0=f^{\prime}\left(t_{0}\right)=\operatorname{det}\left(\gamma^{\prime}\left(t_{0}\right), \gamma(\beta)-\gamma(\alpha)\right)
$$

This shows that $\gamma^{\prime}\left(t_{0}\right)$ and $\gamma(\beta)-\gamma(\alpha)$ are linearly dependent and for \mathbb{R}^{2}, they are parallel.
9. Suppose γ is an arc of a circle. If we center at the origin, then the position vector is the normal vector, hence passes through the center. Conversely, Suppose γ is a unit speed curve such that all its normal lines pass through a given point, say a. Consider $f(t)=\|\gamma(t)-a\|^{2}$. Then

$$
f^{\prime}(t)=2\left\langle\gamma^{\prime}(t), \gamma(t)-a\right\rangle
$$

The vector $\gamma(t)-a$ is a normal line by assumption and $\gamma^{\prime}(t)$ is a tangent vector, hence they are perpendicular so $f^{\prime}(t)=0$ for all t where the assumption holds. Hence $f(t)$ is a constant, i.e. $\|\gamma(t)-a\|=R$ for some R.
10. Differentiating $\|\gamma(s)\|^{2}=1$ twice, we get

$$
\begin{aligned}
& \left\langle\gamma^{\prime}(s), \gamma(s)\right\rangle=0 \\
& \left\langle\gamma^{\prime \prime}(s), \gamma(s)\right\rangle+\left\langle\gamma^{\prime}(s), \gamma^{\prime}(s)\right\rangle=0
\end{aligned}
$$

Using the fact that $\gamma^{\prime}=T,\left\|\gamma^{\prime}(s)\right\|=1$ and $\gamma^{\prime \prime}(s)=\dot{T}=\kappa N$,

$$
\langle N(s), \gamma(s)\rangle=-\frac{1}{\kappa}
$$

Taking the derivative once more, we have

$$
-\left(\frac{1}{\kappa}\right)^{\prime}=\langle\dot{N}, \gamma\rangle+\langle N, \dot{\gamma}\rangle=\langle\dot{N}, \gamma\rangle
$$

since $\dot{\gamma}$ and N are perpendicular. From the Frenet-Serret equations,

$$
\langle\dot{N}, \gamma\rangle=-K\langle T, \gamma\rangle+\tau\langle B, \gamma\rangle=-K\langle\dot{\gamma}, \gamma\rangle+\tau\langle B, \gamma\rangle=\tau\langle B, \gamma\rangle
$$

where we used the fact that γ lies on a sphere so $\langle\dot{\gamma}, \gamma\rangle=0$. Finally taking the derivative once more

$$
-\left(\frac{1}{\kappa}\right)^{\prime \prime}=\tau\langle\dot{B}, \gamma\rangle+\tau\langle B, \dot{\gamma}\rangle=\tau\langle\dot{B}, \gamma\rangle
$$

and use the Frenet-Serret equations once more to get

$$
-\left(\frac{1}{\kappa}\right)^{\prime \prime}=-\tau^{2}\langle N, \gamma\rangle=-\tau^{2}\left(\frac{1}{\kappa}\right)
$$

Hence we want to solve an ODE of the form $y^{\prime \prime}+\tau^{2} y=0$. It has a solution

$$
y(s)=b \cos (\tau s)+c \sin (\tau s)
$$

for some constants b and c. Since $y=\frac{1}{\kappa}$, we obtain the result.
11. Book Prop 2.3.5

